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A forbidden zones theorem, mathematical approach and model 

are proposed in the present article. In particular, the approach supposes 

that people decide as if there were some biases of the expectations of 

measurement data. The article is motivated by the need of a theoretical 

support for the practical analysis performed for the purposes of utility 

and prospect theories, behavioral economics, psychology, decision and 

social sciences. Possible general consequences and applications of the 

theorem and approach for a noise and biases of measurement data are 

preliminary considered as well.  
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1.  Introduction 

 

In the present article, random variables are analyzed whose supports are 

located in finite intervals. Some information about the variables, namely non-zero 

values of the minimal variances, and finite sizes of their support intervals are used 

in an existence theorem to establish the existence of some non-zero bounds on their 

expectations near the boundaries of the intervals and to estimate these bounds. The 

obtained bounds for the expectation can be considered as conditions for some 

allowed zone in the center and forbidden zones near the boundaries of the interval. 

The main attention is paid to applied and practical aspects such as 

consequences and applications of the theorem, new mathematical approach and 

models. Questions are especially emphasized those concern the practical analysis of 

the problems of utility and prospect theories (see, e.g., Harin 2012a, 2012b, 2015) 

that has motivated the present article.  

Section 1 is devoted to the review of the literature and sources of the article. 

Section 2 is the proof of the theorem. Section 3 is devoted to consequences and 

explanations of the theorem, to new mathematical approach and models. Section 4 

is devoted to applications of the theorem and approach. In section 5 the main 

conditions, deductions and remaining questions are summarized and discussed. 

Appendix is devoted to the proofs of the lemmas for the theorem.  
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1.1.  Functions, moments, utility, noise and bounds. Review of literature  

 

Various bounds for moments and functions of random variables are 

considered in a number of works, see, e.g., the following citations.  

Continuous random variables on infinite interval are analyzed in Moriguti 

(1952). The expression for lower bounds of the n-th probability moments of any 

continuous distribution is obtained under the condition of finite variance. Madansky 

(1959) considers moment spaces of multivariate distributions and derives upper and 

lower bounds on the expectation of a convex function of a vector valued random 

variable. Chernoff (1981) considers a normally distributed  X  with density  φ(x),  
mean  0,  variance  1  and an absolutely continuous function  g(X)  that has finite 

variance. The inequality (upper bound) is obtained for the variance of  g(X)  in 

terms of its derivative. Cacoullos (1982) obtains also the lower bound for the 

variance and extends these bounds for other distributions, including discrete ones. 

Bounds for the probabilities and expectations of convex functions of discrete 

random variables with finite support are studied in Prékopa (1990). Inequalities for 

the expectations of functions are studied in Prékopa (1992). These inequalities are 

based on information of the moments of discrete random variables. A class of lower 

bounds on the expectation of a convex function using the first two moments of the 

random variable with a bounded support is considered in Dokov and Morton 

(2005). Sharma et al (2009) derive bounds on the extreme deviation of a finite 

interval in terms of its range and standard deviation. They refine the Brunk and 

Samuelson inequalities. Sharma, Gupta and Kapoor (2010) derive bounds on the 

variance of a finite interval. Bounds on the exponential moments of  min(y,X)  and  

XI{X<y}  using the first two moments of the random variable  X  are considered in 

Pinelis (2011). Sharma and Bhandari (2014) obtain upper bounds on the variance of 

discrete unimodal distributions.  

Prékopa (1990), Prékopa (1992), Dokov and Morton (2005), Sharma et al 

(2009), Sharma, Gupta and Kapoor (2010), Pinelis (2011) and Sharma and Bhandari 

(2014) consider the situations some of that are, in the purely mathematical aspects, 

the most similar to the situation which is analyzed here. Additionally, a discrete part 

of the proof in the Appendix of the present article can be considered as another 

variant of the proof of Bhatia and Davis (2000) used in Sharma et al (2009), and 

Sharma, Gupta and Kapoor (2010). The continuous and mixed parts of the 

Appendix can be considered as its development.  
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Mathematical aspects of the utility and prospect theories are considered in a 

number of works, see, e.g., the following citations.  

The classical work of Von Neumann and Morgenstern (1944) founds the 

mathematical basis of the game theory and introduces the Von Neumann and 

Morgenstern utility. Debreu (1960) considers the concept of cardinal utility. This 

gives a topological characterization of families of parallel straight lines in a plane. 

Kramkov and Schachermayer (1999) consider the problem of maximizing the 

expected utility of terminal wealth in the framework of a general incomplete 

semimartingale model of a financial market. Becherer (2006) considers bounded 

solutions to backward stochastic equations driven by random measures. The 

solutions are applied to solve different stochastic optimization problems with 

exponential utility in models where the underlying filtration is noncontinuous. 

Aczél and Luce, (2007) consider a modified axiomatic condition on a weighting 

function  W  for  W(1) = 1.  The modification yields the generalized Prelec function 

with  W(1) ≠ 1.  Steingrimsson and Luce (2007) formulate behavioral equivalents to 

power and to Prelec functions, argue that either the mathematical form or the 

assumption W(1) = 1  is wrong, explore the alternate that W(1) ≠ 1,  formulate and 

experimentally test behavioral axioms. Biagini and Frittelli (2008) consider a 

stochastic financial incomplete market where the price processes are described by a 

vector-valued semimartingale that is possibly non-locally bounded. The embedding 

of the utility maximization problem in Orlicz spaces permits to formulate the 

problem in a unified way. Delong and Klupelberg (2008) consider an optimal 

investment and consumption problem for an investor who trades in a Black–Scholes 

financial market with stochastic coefficients driven by a non-Gaussian Ornstein–

Uhlenbeck process. Horst et. al. (2014) consider the utility maximization problem 

with a general utility function and reduce the utility maximization problem with 

general utility to the study of a fully-coupled Forward-Backward Stochastic 

Differential Equation. Santacroce and Trivellato (2014) consider the problem of 

maximizing the expected utility. The optimal strategy is characterized in terms of a 

semimartingale forward backward system of equations. Vostrikova (2017) 

considers the expected utility maximization problem for exponential Lévy models 

and HARA utilities in the presence of illiquid assets in a portfolio. As applications, 

Black-Scholes models are considered with correlated Brownian motions and also 

Black-Scholes models with jump part represented by a Poisson process. Choulli and 

Ma (2017) deals with forward performances of HARA type. Precisely, for a market 

model in which stock price processes are modeled by a locally bounded d-

dimensional semimartingale, the authors elaborate a complete and explicit 

characterization for this type of forward utilities.  
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Mathematical aspects of the utility and prospect theories are considered in the 

present article as well. In particular the works Aczél and Luce (2007) and 

Steingrimsson and Luce (2007) constitute one of the start points for considerations 

of the next subchapter.  

A noise and its influence are the items of a wealth of works.  

Channel capacity and noise are considered in a number of works, see, e.g., 

Shannon (1949), Shannon (1956), Smith (1971), Wolfowitz (1975), Ahlswede et. 

al. (2013), Cheraghchi (2013), Khanzadi at al (2015).  

The above allowed zone is in a sense similar to the above channel capacity. 

The more the noise, the less the channel capacity. The more the minimal variance, 

the less the allowed zone.  

A noise and equations are considered as well, see, e.g., Caraballo el al. (2007), 

Hu (2015), Xie (2016), Balan and Conus (2016), Chong (2017), Foondun et al 

(2017).  

Some qualitative influences of a noise are analyzed as well.  

For example, stabilization and synchronization by a noise is considered in a 

number of works, see, e.g., Arnold et. al. (1983), Scheutzow (1993), Kwiecinska 

(1999), Crauel et. al. (2003), Cerrai (2005), Appleby and Rodkina (2005), Barbu 

(2009), Hua et. al. (2009), Applebaum and Siakalli (2010), Flandoli et. al. (2017), 

Ma and Kang (2018).  

For example, a noise as a possible cause of periodic behavior is considered in 

some works, see, e.g., Scheutzow (1985), Giacomin and Poquet (2015),  

So the cited articles devoted to a noise and stabilization and periodic behavior 

and also, in a sense, the present article show that a noise can exert not only 

quantitative but also qualitative influence.  
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1.2.  Practical needs of consideration  

1.2.1.  Problems of probable and sure outcomes  

 

A man is a key subject of economics and other sciences. There are a number 

of problems concerned with the mathematical description of the behavior of a man. 

Examples of them are the underweighting of high and the overweighting of low 

probabilities, risk aversion, the Allais paradox, risk premium, etc.  

The essence of these problems consists in biases of preferences and choices of 

people (subjects) for the probable and sure outcomes in comparison with the 

predictions of the probability theory. The biases are maximal near the boundaries of 

the probability scale, that is, at high and low probabilities. These problems are well-

known, basic and fundamental. They are the most important in behavioral 

economics in utility and prospect theories and also in decision sciences, social 

sciences and psychology.  

The above basic problems are pointed out in a wealth of works.  

For example, we see in Kahneman and Thaler (2006) p. 222:  

“A long series of modern challenges to utility theory, starting with 

the paradoxes of Allais (1953) and Ellsberg (1961) and including framing 

effects, have demonstrated inconsistency in preferences”  

For example, we see in Kahneman and Tversky (1979) p. 265:  

“PROBLEM1: Choose between  

A:  2,500 with probability  .33, 

2,400 with probability  .66, 

0 with probability   .01; 

B:  2,400     with certainty. 

N = 72   [18]    [82]” 

For example, we see in Starmer and Sugden (1991) p. 974:  

“… a choice between two lotteries R' (for "riskier") and S' (for "safer"). R' 

gave a 0.2 chance of winning ₤10.00 and a 0.75 chance of winning ₤7.00 (with 
the residual 0.05 chance of winning nothing); S' gave ₤7.00 for sure.” 

R' gives  ₤10.00×0.2 + ₤7.00×0.75 = ₤7.25.  S' gives  ₤7.00×1 = ₤7.00.  Here  R' = 
₤7.25 > S' = ₤7.00.  The results are: 13 choices for R' and 27 choices for S'.  

For example, we see in Barberis (2013) p.177 (after Gonzalez and Wu 1999) 

the median cash equivalents (in dollars) for the following non-mixed prospect:  

Outcomes  (0 or $100); Probability .90; Equivalent  $63.  
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1.2.2.  Problems of varied domains  

 

Moreover, an additional and, maybe, more hard problem is the inverse 

behavior of the people in different domains. For instance, there are a number of 

warrants (at the high probabilities) of risk aversion in the domain of gains but risk 

seeking in the domain of losses.  

For example, we see in Thaler (2016), p. 1582 (the boldface is my own):  

“We observe a pattern that was frequently displayed: subjects were 

risk averse in the domain of gains but risk seeking in the domain of 

losses.  

For example, we see in Kahneman and Tversky (1979) p. 268 Table 1:  

“Problem 3:  (4,000, .80)  <  (3,000).  

   [20]   [80] 

Problem 3':   (-4,000, .80)  >  (-3,000). 

   [92]   [8]” 

For example, we see in Tversky and Kahneman (1992) p. 307 in Table 3 

median cash equivalents (in dollars) for the following non-mixed prospects:  

Outcomes  (0 or $50); Probability .90; Equivalent  $37.  

Outcomes (0 or -$50); Probability .90; Equivalent -$39.  

Outcomes  (0 or $200); Probability .90; Equivalent  $131.  

Outcomes (0 or -$200); Probability .90; Equivalent -$155.  

These and similar examples will be simplified and considered below in the 

next sections.  

Note that subjects change their preferences and choices from aversion to 

seeking and vice versa not only when the domain are changed from gains to losses 

but from high to low probabilities as well. Such domains will be considered in 

future articles by means the approach and models proposed here.  

The present article is motivated in large measure by the need of rigorous 

mathematical support for the already performed analysis of the influence of 

scattering and noisiness of data. The idea of the theorem considered here has 

explained, at least partially, the above problems (see, e.g., Harin 2012a, Harin 

2012b, Harin 2015).  
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1.3.  Two ways. Variance, expectation and forbidden zones  

 

Many efforts were applied to explain the above basic problems of behavioral 

economics and other sciences.  

One of possible ways to explain them is widely discussed, e.g., in Schoemaker 

and Hershey (1992), Hey and Orme (1994), Chay et al (2005), Butler and Loomes 

(2007). The essence of this way consists in a proper attention to uncertainty, 

imprecision, noise, incompleteness and other reasons that might cause dispersion, 

scattering and spread of data.  

Another possible way to explain these problems is to consider the vicinities of 

the borders of the probability scale, e.g. at  p~1.  Steingrimsson and Luce (2007) 

and Aczél and Luce (2007) emphasized a fundamental question:  whether Prelec’s 

weighting function  W(p)  (see Prelec, 1998)  is equal to  1  at  p=1.   

In any case, one may suppose that a synthesis of the above two ways can be of 

some interest. This idea of the synthesis turned out to be useful indeed. It has been 

successful to explain, at least partially, the underweighting of high and the 

overweighting of low probabilities, risk aversion, and some other problems (see, 

e.g., Harin 2012a, Harin 2012b and Harin 2015). There exist also works providing 

experimental support of this synthesis (see, e.g., Starmer and Sugden 1991, Harin 

2014, Cox, Sadiraj and Schmidt 2015).  

In the present article some information about the variance of a random 

variable that takes on values in a finite closed interval is used to estimate bounds on 

its expectation. It is proven that if there is a non-zero lower bound on the variance 

of the variable, then non-zero bounds or forbidden zones for its expectation exist 

near the boundaries of the interval.  

The role of a noise, as a possible cause of these forbidden zones and their 

possible influence on results of measurements near the boundaries of intervals are 

preliminary considered as well.  

Keeping in mind the above bounds on functions of random variables, 

functions of the expectation of a random variable can be also investigated.  
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2.  Theorem  

2.1.  Preliminaries  

 

The practical need of the article is a discrete random variable taking the finite 

number of values. This corresponds to usual finite numbers of measurements in the 

behavioral economics. A general case will be considered here nevertheless.  

Let us consider a probability space  (Ω, Æ, P)  and a random variable  X,  such 

that  Ω  R.  Suppose that the support of  X  is an interval  ∞<−< )(0:],[ abba .  

Suppose that  X  can have a continuous part and a discrete part and at least one of 

these parts is not identically equal to zero.  
Let us denote the possible discrete values of  X  as ,}{ kx  ,,...,2,1 Kk =   where  

1≥K ,  and  bxa k ≤≤ ,  the possible continuous values of  X  as  ],[ bax∈ .  Let us 

denote the possible probability mass function as  )( kxp   and probability density 

function as  )(xf .   

Under the condition  

1)()()()(
],[1

=+=+ ∫∑∫∑
∈

+∞

∞−=

b

abax

k

K

k

k dxxfxpdxxfxp
k

,    (1) 

let us consider the expectation  µ   of  X,  its variance  σ  and their interrelationships.  

 

2.2.  Conditions of the variance maximality  

 

The maximal value of the variance of a random variable of any type is 

intuitively equal to the variance of the discrete random variable whose probability 

mass function has only two non-zero values located at the boundaries of the 

interval. This statement is nevertheless proven for the discrete distributions in 

Bhatia and Davis (2000) and for the general case in lemmas in the Appendix.  

Such a probability mass function can be represented by the two values:       

fX(a) = (b-μ)/(b-a)  and  fX(b) = (μ-a)/(b-a).  The following inequality is 

consequently true for the variance of the considered random variable  X   

))((][ 2 µµµ −−≤− baXE .       (2)  
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2.3.  Existence theorem 

 

Due to the convenience of abbreviations and consonant with the usage in 

previous works, the terms “bound” and “forbidden zones” will sometimes be 

referred to with the term “restriction,” especially in mathematical expressions, using 

its first letter “r”  or “R,”  for example  “rExpect”  or  “rµ”  or  “R.”   

Theorem. Suppose a random variable  X  takes on values in an interval  [a, b],  

0 < (b-a) < ∞.  If there is some non-zero minimal variance  σ2
Min > 0 : E[X-μ]2 ≥ 

σ2
Min,  then some non-zero bounds (restrictions)  rµ ≡ rExpect ≡ rRestrict.Expect > 0  exist 

on its expectation  μ ≡ E[X]  near the boundaries of the interval  [a, b],  that is  

brbraa <−≤≤+< )()( µµ µ .      (3).  

Proof. It follows from (2) and the hypotheses of the theorem that  

))((][0 22 µµµσ −−≤−≤< baXEMin .  

For the boundary  a  this leads to the inequalities  ))((2 abaMin −−≤ µσ   and  

ab
a

Min

−
+≥

2σ
µ .        (4).  

For the boundary  b  the consideration is similar and gives the inequality  

ab
b

Min

−
−≤

2σµ .        (5).  

Determining the bounds (restrictions)  rµ  on the expectation  µ   as  

ab
r

Min

−
≡

2σ
µ ,         (6) 

and using (4) and (5), we obtain the generalized inequalities  

µµ µ rbra −≤≤+  .  

Therefore, if the inequalities  0 < (b-a) < ∞  and  σ2
Min > 0  are true, then the 

non-zero bounds (restrictions)  rµ > 0  exist, such that the inequalities (3)  

brbraa <−≤≤+< )()( µµ µ   

are satisfied, which proves the theorem.  
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3.  Consequences of the theorem. Examples  

3.1.  General consequences  

3.1.1.  Practical need. General implication. Mathematical support  

 

The initial reason of the above theorem was to provide the mathematical 

support for the analysis of the practical experiments in behavioral economics.  

Due to the need of financial incentives for subjects of the experiments and to 

the finiteness of financial possibilities of experimenter’s teams, the numbers of 

experimental results are necessarily finite.  

The theorem meets this practical need. It provides the mathematical support 

for the analysis of the above experiments. It proves the possibility of existence of 

the forbidden zones for the discrete random variables that take a limited number of 

values that were used in the above analysis. It determines also the conditions of 

their existence and their minimal width.  

In addition to this particular practical value, the theorem proves that this result 

is true for any random variable. The examples below and earlier works (see, e.g., 

Harin 2012b) prove that the theorem supports the analysis in more than one domain, 

moreover.  
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3.1.2.  Minimal variance. Data scattering. Noise  

 

The theorem states that the factor which leads to the forbidden zones and 

determines their widths is the non-zero minimal variance. It is exactly the minimal 

variance, not the variance itself.  

There can be a wealth of causes of this non-zero minimal variance. It can be 

caused evidently by any non-zero scattering and spread of data. The list of such 

causes is rather wide. It includes a noise, imprecision, errors, incompleteness, 

various types of uncertainty, etc. Such causes are considered in a lot of works, e.g., 

Schoemaker and Hershey (1992), Hey and Orme (1994), Chay et al (2005), Butler 

and Loomes (2007).  

A noise can be one of usual sources of the non-zero minimal variance.  

There are many types and subtypes of noise. A hypothetic task of determining 

of an exact relationship between a level of noise and a non-zero minimal variance of 

random variables can be a rather complicated one.  

If, nevertheless, a noise leads to some non-zero minimal variance of the 

considered random variable, then, due to the theorem, such a noise leads evidently 

to the above non-zero forbidden zones. If a noise leads to some increasing of the 

value of this minimal variance then the value of these zones increase as well.  

So the theorem can provide a new mathematical tool for description of the 

influence of at least some types of a noise near the boundaries of intervals.  
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3.2.  Practical examples of existence  

3.2.1.  Practical example of existence. Ships and waves  

 

Suppose the calm or mirror-like sea. Suppose a small rigid boat or any other 

small rigid floating body which is at rest in the mirror-like sea. Suppose that this 

boat or the body rests in the mirror-like sea right against (or be constantly touching) 

the moorage wall (which is also rigid).  

As long as the sea is calm, the expectation of its side can touch the wall.  

Suppose the heavy sea. Suppose a small rigid boat or any other small rigid 

floating body which oscillates on waves in the heavy sea. Suppose that this boat or 

the body oscillates on waves near the rigid moorage wall.  

When the boat is oscillated by sea waves, then its side oscillates also (both up-

down and left-right) and it can touch the wall only in the nearest extremity of the 

oscillations. Therefore, the expectation of the side cannot touch the wall (if the 

oscillations are non-zero). Therefore, the expectation of the side is biased from the 

wall.   

So, one can say that, in the presence of the waves, a forbidden zone exists 

between the expectation of the side and the wall.   

This forbidden zone biases and separates the expectation from the wall. The 

width of the forbidden zone is roughly about a half of the amplitude of the 

oscillations. 

 

3.2.2.  Practical examples of existence. Washing machine, drill, … 

 

Suppose a washing machine that can vibrate when pressing bed linen. 

Suppose this washing machine near a rigid wall. Suppose an edgeless side of a drill 

or any other rigid body that can vibrate is located near a rigid surface or wall.  

If the washing machine or the drill is at rest, then the expectation of its 

edgeless side can be located right against (be constantly touching) the wall.  

If the washing machine or the drill vibrates, then the expectation of its 

edgeless side is biased and kept away from the rigid wall due to its vibrations.  
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3.3.  General example  

3.3.1.  Rigidness  

 

The same is true for any other rigid body near any rigid surface or wall:  

If the body is at rest, then the expectation of its side can be located right 

against the wall (be constantly touching the wall). If the body vibrates, then the 

expectation of its side is biased and kept away from the wall by the vibrations.  

In other words, a forbidden zone arises between the rigid wall (surface) and 

the expectation of the side of the rigid body, when the body vibrates. The width of 

the forbidden zone is roughly about a half of the amplitude of the vibrations.  

The above rigid boat near rigid moorage wall, rigid washing machine near 

rigid wall and rigid drill near rigid surface were the examples of a rigid body that 

can vibrate or oscillate near a rigid boundary (a rigid surface).  

What do the conditions of “rigid” body and “rigid” boundary mean?   

If either the body or the boundary or the both are not rigid, then the vibrations 

and oscillations can be suppressed partially or even totally. Hence the forbidden 

zone can be suppressed also.  
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3.3.2.  Vibrations suppression. Sure outcomes  

 

Vibrations, oscillations can be suppressed by some efforts. Such efforts can 

be, e.g., physical in the case of the physical vibrations of the body. A vibrating rigid 

body can be pressed by some drawing or pressing force exerted by some means. 

The suppressing means and their principles of action can be of different kinds, e.g., 

a flexible or inextensible cord, a pressure plate, etc. The forbidden zone can be 

suppressed either partially or even totally, depending on the parameters of the 

suppression and suppression means.  

This suppression can correspond to the case of sure outcomes in behavioral 

economics, decision and social sciences and psychology.  

Let us compare probable and sure outcomes and corresponding biases.  

The term “sure” presumes usually that some efforts are applied to guarantee 

this sure outcome in comparison with the probable ones. This leads to some 

qualitative difference between these probable and sure outcomes. This qualitative 

difference can lead to some quantitative difference between the widths of the 

forbidden zones and hence the biases for the expectations of data for these probable 

and sure outcomes.  

Due to the guaranteeing efforts, the width of the forbidden zones and hence 

the bias for sure outcomes can be less than the width and biases for the probable 

outcomes. The width for the sure outcomes can even be equal to zero, which means 

that the cause of the forbidden zones is too weak to overcome the guaranteeing 

efforts.  

So, sure outcomes are guaranteed by some guaranteeing efforts. Due to these 

efforts, minimal variance  σ2
Sure,  the forbidden zones and the bias for the sure 

outcomes can be suppressed and reduced.  

The nature of these guaranteeing efforts can nevertheless vary for various 

cases. Therefore in the case of the sure outcomes, a consideration of the minimal 

variance  σ2
Sure  and even of the forbidden zones can be more complicated than in 

the case of the probable outcomes.  
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4.  Mathematical approach of biases of expectations  

4.1.  Preliminary considerations. Two main presuppositions 

 

First of all, the above problems of these theories have been analyzed many 

times by various teams of researchers but have not been adequately solved 

nevertheless. For example, Kahneman and Thaler (2006) noted (see p. 222):  

“A long series of modern challenges to utility theory, starting with 

the paradoxes of Allais (1953) …, have demonstrated inconsistency in 

preferences”  

In other words, the problem that was revealed in 1953 was not adequately 

solved during more than a half of century (the available literature testifies that it 

was not adequately solved even in 2017). In addition, the modern utility and 

prospect theories undoubtedly constitute a complex set of the data, rules, 

suppositions etc.  

All the circumstances and reasons lead to the deduction that an essential and 

elaborated contribution to the modern utility and prospect theories needs the 

elaborated work of a sufficient number of research teams. So it cannot be made by a 

single researcher and all the more by a single theorem and single article.  

Therefore the leading principle of the approach should be “stage by stage and 

step by step.” Consequently the approach that can be based on the proposed 

theorem and its consequences and can be proposed in the present single article 

should be only a preliminary stage for subsequent changes, modifications and 

refinements by some research teams.  

So there is no sense and possibility for this single article to build a thorough 

and well-composed construction of rigorous statements proven by a wealth of 

experimental and theoretical works. So for such a preliminary stage it is sufficient 

to propose only the above theorem with its consequences and a collection of some 

suppositions and relationships.  
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Secondly, due to the theorem, the non-zero minimal variance of measurement 

data leads to the existence of the forbidden zones for the expectation of the data 

near the boundaries of the intervals of the data. These forbidden zones evidently 

lead to the biases of the expectations, at least right against the boundaries.  

The above examples of this chapter evidently illustrate such forbidden zones. 

Similar examples are widespread and usual in the practical real life. Due to this 

prevalence, the subjects can keep in mind the feasibility of such forbidden zones 

and the biases of the expectations caused by the zones. This can influence subjects’ 

behavior and choices.  

Due to all these considerations, the two main presuppositions can be proposed 

for the approach:  

1.  Biases of expectations. The subjects make their choices (at least to a 

considerable degree) as if there were some biases of the expectations of the 

outcomes.  

(This presupposition can be supported by the thought that such biases may be 

proposed and tested even from some purely formal point of view. The mathematical 

approach of biases of the expectations is to explain not only the objective situations 

but also and mainly the subjective behavior and choices of subjects. The analysis of 

the literature shows that this presupposition is new)  

2.  Explanation by theorem. These biases (real biases or subjective reaction 

and choices of the subjects) can be explained (at least to a considerable degree) with 

the help of the forbidden zones of the theorem.  

(The analysis of the literature shows that the forbidden zones statement of the 

theorem is new)  
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4.2.  Denotations  

 

I denote the expectations of the probable and sure outcomes as  

obableob PrPr µµ ≡        and       Sureµ .  

Due to the first presupposition, the subjects make their choices as if there were 

some biases of the expectations of the outcomes.  The real measurement data 

represent the set of the choices of the subjects. Using this set, one can estimate the 

biases of the expectations of the data for the probable and sure outcomes that are 

required to obtain the data corresponding to these choices. I denote them as  

obableChoiceobableob Pr.PrPr ∆≡∆≡∆     and    SureChoiceSure .∆≡∆ .  

Let us consider some abstract mode 1 and mode 2 of outcomes. Irrespective of 

these numbers, one of these modes corresponds to the probable outcomes (this may 

be either mode 1 or mode 2) and the other – to the sure ones. The corresponding 

expectations are  µ1  and  µ2  and the biases are  Δ1  and  Δ2.   

One can introduce also the two more designations:  

a)  the difference between the expectations of the compared modes  

12 µµµ −≡d ,  

b)  the difference  

12 ∆−∆≡Choiced   

that is required to obtain the data corresponding to the revealed choices.  

The simplicity of the mathematical calculations and transformations allows to 

omit further the most of intermediate mathematical manipulations.  
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4.3.  General mathematical relationships  

 

Let us consider some essential features of the examined situations and, using 

the above denotations, develop some mathematical relationships.  

 

1.  Necessary condition for approach. Due to the first presupposition, the 

approach can evidently be useful only if some non-zero difference between the 

biases for the choices exists  

0||: >∃ ChoiceChoice dd     or    0sgn ≠Choised .     (7) 

 

2.  Forbidden zones as, at least, one of origins of biases. The biases of the 

expectations may be introduced and considered purely formally. The question is not 

only whether these biases can explain the problems. Due to the second 

presupposition, these biases themselves should be explained by the theorem.  

First of all, the theorem should be applicable. This condition is satisfied if  

02 >Minσ .  

Further let us denote the biases caused by the forbidden zones of the theorem 

by  ΔTheorem  and the difference that can be explained by the theorem as  dTheorem.  

The sign of the difference for the choice should coincide with that for the theorem  

TheoremChoice dd sgnsgn = .  

Then the conditions for the explanation can be represented as  dTheorem ≈ 
dChoice,  in the case when the forbidden zones of the theorem are the main source of 

the biases. If the forbidden zones of the theorem are one of the essential source of 

the biases, then the conditions for the explanation can be represented as  dTheorem = 

O(dChoice).  So the relationships of the explanation can be represented as  

ChoiseTheorem dd ≈     or at least    )( ChoiseTheorem dOd = .    (8) 

The examples considered below prove that the theorem predicts the right signs 

of the difference and there is no need to state the concerned additional supposition.  

The above considerations, suppositions and formulas may be used in more 

general situations as well. Let us consider a particular supposition.  
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4.  Biases of sure outcomes. The above considerations about the noise 

suppression and sure outcomes lead to the deduction that the sure outcomes are 

guaranteed by some guaranteeing efforts. Due to these efforts, the biases of the sure 

outcomes can be suppressed and reduced. They can be moreover equal to zero.  

In accordance with this deduction, I suppose that the bias of the measurement 

data for the sure outcomes is equal to zero or, more generally, is strictly less than 

the bias for the probable outcomes.  

The application of the condition (7) of non-zero difference between the biases 

for the choices enables to deduce that the absolute value of the bias for the probable 

outcomes should be non-zero.  

This is supported by the examples considered below. They prove that the 

theorem predicts the true signs of the bias for the probable outcomes. So there is no 

need to state the additional supposition about the signs.  

The relationships of sure and probable outcomes and choices can be 

formulated as  

|||| Pr Sureob ∆>∆     or    obChoised Prsgnsgn ∆= .    (9) 
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4.4.  First stage of the approach. Qualitative problems and explanations  

 

A first stage of the approach can be a qualitative one. This means that the 

approach can both deal with qualitative problems and give qualitative explanations.  

The preliminary statements of the first stage of the approach can be 

formulated as follows:  

Qualitative analysis. Only qualitative analysis will be performed.  

Qualitative problems. Only qualitative problems will be considered.  

Qualitative explanation. Only qualitative explanation of the existing 

problems will be given. No predictions will be made in the scope of this first stage 

of the approach.  

Choices of subjects. The approach will explain mainly the subjective 

behavior and choices of subjects.  
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5.  Qualitative mathematical models  

 

Let us consider a possible qualitative mathematical model for the analysis of 

the above problems in the scope of the first stage of the approach. First of all let us 

consider possible restrictions and questions.  

 

5.1  Restrictions on models. Main question  

5.1.1  Theorem bound for the bias  

 

Let us estimate the limits for the biases of the expectations with the help of the 

theorem.  

Due to (6), the minimal value of the width of the forbidden zone (of the 

restriction  rµ) is  

ab
r

Min

−
=

2σ
µ     and we have    

ab

r

ab
Min

−
=

−
µσ

.  

Due to the evident limit  

2

1
≤

− ab
Maxσ

    we have    
4

1
≤

− ab

rµ
.  

This is some rough estimate for the maximal width of the forbidden zone. More 

exact estimates will be given in next articles. In any case it is not more than  (b-a)/2.   

The bias of the expectation cannot be more than the width of the forbidden 

zone. The obtained estimate for the maximal width is therefore the estimate for the 

maximal bias. It should be noted that, for example, if one considers some normal 

distribution that is located near the boundary at the distance of three sigma from its 

expectation, then there is no need to use such an estimate.  

Nevertheless this estimate of  0.25(b-a)  can be used as some secure upper 

bound for the bias. We can denote this secure upper bound as ΔSequre  and write  

4

ab
Secure

−
≤∆ .  
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5.1.2.  Certainty equivalents. Relative biases  

 

Let us consider the real experimental data and normalize the values of the 

biases to the values of the gains/losses. These normalized values can represent the 

relative biases of the expectations or probabilities.  

Let us consider the practical numerical examples of certainty equivalents.  

For instance, we see in the above example of Barberis (2013):  

The probable outcomes give  100*.9 = 90.  The median cash equivalent gives  

63*1 = 63.  The expectations are  

6390 > ,  

but the subjects manifest the equivalent choices. To provide the equivalent choices, 

the difference between the biases of the expectations for the probable and sure 

outcomes should be equal to  ΔProb - ΔSure = 27.  That is the bias for the probable 

outcome should not be less than  ΔProb ≥ 27.   

For instance, we see in the above examples of Tversky and Kahneman (1992):  

1.  Gain. The probable outcomes give  50*.9 = 45.  The median cash 

equivalent gives  37*1 = 37.  The expectations are  

3745 > ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ 8.   

Loss. The probable outcomes give  -50*.90 = -45.  The median cash 

equivalent gives  -39*1 = -39.  The expectations are  

3945 −<− ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ -6.   

2.  Gain. The probable outcomes give  200*.90 = 180.  The median cash 

equivalent gives  131*1 = 131.  The expectations are  

131180 > ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ 49.   

Loss. The probable outcomes give  -200*.90 = -180.  The median cash 

equivalent gives  -155*1 = -155.  The expectations are  

155180 −<− ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ -35.   
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Let us estimate the biases of the expectations for the probable outcomes in the 

scope of the approach.  

The values of the considered biases differ essentially from each other. Let us 

normalize them to the values of the gain/loss. These normalized values can 

represent the relative biases of the expectations or the relative biases of the 

probabilities. So we obtain:  

Barberis (2013): The relative bias is  ΔProb ≥ 30/100 =0.3.   

Tversky and Kahneman (1992):  

1.  Gain. The relative bias is  ΔRel ≥ 8/50 = 0.16.   

Loss. The relative bias is  ΔRel ≥ -6/(-50) = 0.12.   

2.  Gain. The relative bias is  ΔRel ≥ 49/200 = 0.245.   

Loss. The relative bias is  ΔRel ≥ -35/(-200) = 0.175.   

So sometimes the relative biases are comparable or even more than the above 

secure upper relative bound  0.25.   

Therefore, and also from general and formal points of view, the following 

supposition can be stated:  

“In general cases, along with the non-zero minimal variance of the 

measurement data, another source or sources of the biases can exist and cannot be 

excluded so far.”  

Therefore, only some general formal qualitative mathematical model can be 

considered so far.  

 

5.1.3.  Main question  

 

Due to the second presupposition, the approach implies that the biases are 

caused by the forbidden zones of the theorem. The forbidden zones are, in turn, 

caused by the non-zero minimal variance of the random variable. Due to the above 

high experimental values of the biases, the main question is to determine whether 

the forbidden zones can lead to such high values of the biases. This question leads 

to another one about the widths of the forbidden zones for various types of 

distributions.  

So, the main question of future research is to analyze the widths of the 

forbidden zones for various types of distributions.  
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5.2.  Basics of general formal qualitative mathematical model  

 

Keeping in the mind the above restrictions and question, let us analyze 

possible basics of the general formal qualitative mathematical model.  

The model should deal with qualitative problems. There can be only three 

combinations: the expectation for the probable outcome can be more, less or equal 

to that for the sure ones.  

The inalienable feature of the qualitative problems is that the signs of the 

differences for the choices do not coincide with the signs of the differences for the 

expectations of the probable and sure outcomes.  

That is when the difference of the expectations for the probable and sure 

outcomes is, e.g., positive, then the corresponding difference for subjects’ choices is 

negative. Due to (7), the difference for subjects’ choices should not equal zero. This 

feature of the qualitative problems can be represented mathematically as  

µddChoice sgnsgn ≠ .        (10) 

That is: for example, if the difference  dµ  between the expectations of the compared 

modes is undoubtedly positive (that is the sign of  dµ  is  sgn dµ > 0), then the 

revealed choice of the subjects is such that the difference  dChoice,  that is required to 

obtain the data corresponding to this choice, should be undoubtedly negative (that is 

the sign of  dChoice  is  sgn dChoice < 0).   

These qualitative types of the above problems are chosen as the examples that 

are usual in experiments (see, e.g., Kahneman and Tversky 1979, Starmer and 

Sugden 1991, Tversky and Kahneman 1992, Thaler 2016). They can manifest clear 

qualitative representations of the above problems and can be a background for some 

further generalizations.  

To change the difference of the expectations for the probable and sure 

outcomes to another qualitative situation, the bias of choices should be evidently 

not less than this difference, that is  

|||| µddChoice ≥ .  

This relationship implies that for the problems of certainty equivalents  

|||| µddChoice =    and, due to (10),   µddChoice −= ,  

and for the other problems  

|||| µddChoice > .  
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5.2.1.  Trial examples of applications  

of general formal qualitative mathematical model  

 

Let us test the above examples of Section 1 by the general formal qualitative 

mathematical model.  

In the above citation from Kahneman and Tversky (1979) p. 265 the 

difference between the expectations is  2,500*.33 + 2,400*.66 - 2,400 = 2,400 - 

2,400*.01 + 100*.33 - 2,400 = - 24 + 33 = 9.  The difference between the choices 

should be more than  9.  Let it be equal, for example, to  15.   

So the subjects decide if the resulting difference between the expectations was  

15 – 9 = 6  in favor of the sure outcome.  

The qualitative result is supported by the experiment. That is  82%  in favor of 

the sure outcome.  

In the above citation from Starmer and Sugden (1991) p. 974 the difference 

between the expectations is  10.00*.2 + 7.00*.75 - 7.00 = 2.00 + 5.25 - 7.00 = 

+0.25.  The difference between the choices should be more than  0.25  and should 

be at least partially caused by a noise.  Let it be equal, for example, to  0.4.   

So the subjects decide if the resulting difference between the expectations was  

0.4 – 0.25 = 0.15  in favor of the sure outcome.  

The qualitative result is supported by the experiment. That is  27/(13+27) = 

27/40 = 87.5%  in favor of the sure outcome.  

In the above citation from Barberis (2013) the difference between the 

expectations is  100*0.9 - 63 = 27.  The difference for the choices should be equal 

to  27  as well.  

So the subjects decide if the resulting difference between the expectations was  

27  in favor of the sure outcome. The qualitative result is supported by the 

experiment.  
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In the above citation from Tversky and Kahneman (1992) we can find:  

1.  Gain. The difference between the expectations is  50*0.9 - 37 = 8.  The 

difference for the choices should be equal to  8  as well.  

So the subjects decide if the resulting difference between the expectations was  

8.  This qualitative result is supported by the experiment.  

Loss. The difference between the expectations is  -50*0.9 – (-39) = -6.  The 

difference for the choices should be equal to  -6  as well.  

So the subjects decide if the resulting difference between the expectations was  

-6.  This qualitative result is supported by the experiment.  

2.  Gain. The difference between the expectations is  200*.90 - 131 = 49.  The 

difference for the choices should be equal to  49  as well.  

So the subjects decide if the resulting difference between the expectations was  

49.  This qualitative result is supported by the experiment.  

Loss. The difference between the expectations is  -200*.90 - (-155) = -35.  

The difference for the choices should be equal to  -35  as well.  

So the subjects decide if the resulting difference between the expectations was  

-35.  This qualitative result is supported by the experiment.  

In all the above examples the difference between the choices should be at least 

partially caused by the non-zero minimal variance of the data. These examples of 

applications of the general formal qualitative mathematical model are trial because 

there is so far too little information about what part of the difference between the 

choices is caused by the non-zero minimal variance of the data.  
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5.3.  Special qualitative mathematical model  

 

Let us consider the qualitative problems under some special condition  

0=µd    or   0=µd    or   Sureobable µµ =Pr .    (11) 

That is the expectations of the probable and sure outcomes are equal to each other. 

Due to this condition, the difference for the choices should be, in accordance with 

(7) either negative or positive.  

This special situation enables to avoid the constraints of the secure upper 

bound  ΔSequre  for the bias and to make the special qualitative model less formal. 

The biases can be selected much less than  ΔSequre  and suppositions will be more 

simple. This special qualitative model can be considered as a first step of the first 

stage of the approach and of an explanation of the above problems. The model will 

be applied to practical numerical examples in the next section.  

The relationships of the special qualitative mathematical model can be 

summarized as follows:  

The relationship (7) of the non-zero difference between the biases for the 

choices  

0||: >∃ ChoiceChoice dd     or    0sgn ≠Choised .  

The relationships (8) of the theorem and choices  

02 >Minσ   and  ChoiseTheorem dd ≈   or at least  )( ChoiseTheorem dOd = .  

The relationships (9) of the probable and sure outcomes and choices  

|||| Pr Sureob ∆>∆     and    obChoised Prsgnsgn ∆= .  

The relationships (11) of the special qualitative problems  

0sgn =µd    or   0=µd    or   Sureobable µµ =Pr .   
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6.  Applications of the theorem and approach. Newness  

6.1.  Practical applications in behavioral economics and decision sciences  

 

The idea of the considered forbidden zones was applied, e.g., in Harin 

(2012b). This work was devoted to the well-known problems of utility and prospect 

theories and was performed for the purposes of utility and prospect theories,  

behavioral economics, psychology, decision and social sciences. Such problems 

were pointed out, e.g., in Kahneman and Thaler (2006).  

In Harin (2012b), some examples of typical paradoxes were studied. The 

studied and similar paradoxes may concern problems such as the underweighting of 

high and the overweighting of low probabilities, risk aversion, etc.  

The dispersion and noisiness of the initial data can lead to the forbidden zones 

for the expectations of these data. This should be taken into account when dealing 

with these kinds of problems. The above forbidden zones explained, at least 

partially, the analyzed examples of paradoxes.  

The concrete numerical examples of analysis and explanation of such 

problems by the proposed special qualitative model will be considered below. To 

emphasize the uniformity of the proposed models, the parameters and analysis will 

be the same for the different domains.  
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6.2.  Practical numerical example. First domain. Gains  

 

The special qualitative mathematical model enables to use small and 

convenient biases. In particular, it is convenient to consider integer numbers. The 

minimal non-zero integer for the bias for the sure outcome is  $1.  Hence the 

minimal integer for the bias for the probable outcomes is  $2.  Suppose that the 

parameters of the special model for the gains are: the bias for the probable outcomes 

is equal to  $2,  and for the sure outcome the bias is equal to  $1  or to zero.  

The above examples can be simplified to the special qualitative ones similar to 

Harin (2012b):  

Imagine that you face the following pair of concurrent decisions.  

Choose between:  

A)  A sure gain of $99.  

B)  99% chance to gain $100 and 1% chance to gain or lose nothing.  

 

4.2.1.  Ideal case  

 

In the ideal case, without taking into account the dispersion of the data, the 

expected values for the probable and sure outcomes are  

99$%10099$ =× ,  

99$%99100$ =× .  

Here, the ideal expected values are exactly equal to each other  

99$99$ = .  

Therefore the both outcomes should be equally preferable.  

So in the ideal case, without taking into account the dispersion of the data, the 

probable and sure outcomes should be equally preferable.  
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6.2.2.  Forbidden zones and biases  

 

In the real case, one should take into account the dispersion of the data, some 

minimal non-zero variance caused by this dispersion and the forbidden zones 

caused by this variance. These forbidden zones can lead to the biases of the 

expectations, at least for the probable outcomes. Let us consider the case of the non-

zero variance of the data, corresponding forbidden zones and biases.  

Let the bias be equal to, say,  ΔProb = $2  for the probable outcomes.  

Let us consider the case when the bias for the sure outcome is equal to  $1.  

We have  
98$1$99$%10099$ =−=∆−× Sure ,  

97$2$99$%99100$ Pr =−=∆−× ob .  

Here, the probable expected value is biased more than the sure one and we have  

97$98$ > .  

Let us consider the case when the bias for the expectations of data for the sure 

outcome is equal to zero. We have  
99$0$99$%10099$ =−=∆−× Sure ,  

97$2$99$%99100$ Pr =−=∆−× ob .  

Here, the probable expected value is biased but the sure expected value is not and 

we have  

97$99$ > .  

In all the cases, the probable expected value is biased more than the sure one. 

The bias decreases the advantage (preference) of the outcome. Therefore the 

probable gain is (due to the obvious difference between the expected values) less 

preferable than the sure one.  

We see the clear and evident difference between the expected values and the 

corresponding salient and unequivocal preferences and choices.  

So the theorem provides the mathematical support for the above analysis in 

the domain of gains.  

So, the forbidden zones and their natural difference for probable and sure 

outcomes can predict the experimental fact that the subjects are risk averse in the 

domain of gains. They explain, at least qualitatively or partially, the analyzed 

example of Thaler (2016) and many other similar results.   

The theorem provides the mathematical support for the analysis in the domain 

of gains. 
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6.3.  Practical numerical example. Second domain. Losses  

 

The case of gains has been explained many times in a lot of ways. The 

uniform explanation for both gains and losses, without additional suppositions, as, 

e.g., Kahneman and Tversky (1979), has not been recognized nevertheless by the 

author of the present article (see a slightly similar work Egozcue et. al. 2011). The 

theorem, approach and models occur to be useful for such a uniform explanation.  

Let us consider the case of losses under the same suppositions as gains.  

Imagine you face the following pair of concurrent decisions. Choose between:  

A)  A sure loss of $99.  

B)  99% chance to loss $100 and 1% chance to gain or lose nothing.  

 

6.3.1.  Ideal case  

 

In the ideal case without the forbidden zones, the expected values for the 

probable and sure outcomes are  

99$%10099$ −=×− ,  

99$%99100$ −=×− .  

Here, the expected values are exactly equal to each other  

99$99$ −=− .  

Therefore the both outcomes should be equally preferable.  

So in the ideal case, without taking into account the dispersion of the data, the 

probable and sure outcomes should be equally preferable.  
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6.3.2.  Forbidden zones and biases 

 

Let us consider the case of the forbidden zones and biases under the same 

suppositions as for the gains. That is for the same parameters of the models.  

The forbidden zone biases the expectation from the boundary of the interval to 

its middle. The bias is subtracted from the absolute value for the both cases of gains 

and losses therefore. That is, due to the opposite signs of the values for gains and 

losses, the bias is subtracted from the expected values for the gains and added to the 

expected values for the losses. It should be emphasized that this is not a supposition 

but a rigorous conclusion. Therefore the applications of the special qualitative 

mathematical model are naturally uniform for more than one domain.  

The parameters of the special model for the gains are: the bias for the probable 

outcomes is equal to  $2,  and for the sure outcome to  $1  or to zero.  

Let us consider the case when the bias for the sure outcome is equal to  $1   
98$1$99$%10099$ −=+−=∆+×− Sure ,  

97$2$99$%99100$ Pr −=+−=∆+×− ob .  

Here, the probable expected value is biased more than the sure one and we have  

97$98$ −<− .  

Let us consider the case when the width of the forbidden zones for the 

expectations of data in the sure outcome is equal to zero. We have  
99$0$99$%10099$ −=+−=∆+×− Sure ,  

97$2$99$%99100$ Pr −=+−=∆+×− ob .  

Here, the probable expected value is biased but the sure expected value is not and  

97$99$ −<− .  

In all the cases, the probable expected value is biased more than the sure one 

as in the case of gains, but here the bias increases the advantage (preference) of the 

outcome and the probable loss is (due to the obvious difference between the 

expected values) more preferable than the sure one.  

We see the clear and evident difference between the expected values and the 

corresponding salient and unequivocal preferences and choices.  

So the special qualitative mathematical model can be naturally, uniformly and 

successfully applied in the domain of losses as well. Instead of the seeming 

simplicity of these applications, the author has not revealed such successful and 

uniform applications in more than one domain in the literature.  
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6.4.  Newness  

 

Due to, e.g., Harin (2012b), the forbidden zones and their natural difference 

for probable and sure outcomes can predict the experimental fact that the subjects 

are risk seeking in the domain of gains but risk seeking in the domain of losses. 

They explain, at least qualitatively or partially, the analyzed examples of Thaler 

(2016) and many other similar results.  

The important feature is that, due to, e.g., Harin (2012b), the described 

forbidden zones can explain the problems and explain experimental results not only 

in the domains of the gains and losses. Hence the forbidden zones and their natural 

difference for probable and sure outcomes can qualitatively or, at least, partially 

predict the experimental facts and explain the problems in various domains.  

There are a lot of real examples of the forbidden zones. The idea of such 

zones helps in the analysis of the well-known problems. The existence theorem 

provides the mathematical description of the forbidden zones and the mathematical 

support for this analysis. The mathematical approach is an application of the 

theorem to these problems. The qualitative mathematical models are the first stage 

of the approach and the special qualitative mathematical model is its first step.  

Unfortunately, the analysis of the literature, comments of comments of 

journals’ editors and reviewers on similar articles and on the previous versions of 

the present article and more than 10-years experience of the editorship in NEP 

reports on utility and prospect theories allow to state that the idea, theorem and its 

support of the above analysis, the approach and models have not been described 

before. So they are new.  

Why did not such an evident and widespread phenomenon as these forbidden 

zones be mathematically described before? The long absence of such a description 

can be probably explained by reasons that such phenomena, those are similar to the 

forbidden zones between ships boards and moorage wall, washing machines and 

walls, etc., are evident, can be as a rule easily estimated as approximately a half of 

the amplitude of the vibrations and need not more detailed research. In the above 

problems and paradoxes, such phenomena are hidden by other details of 

experiments (see, e.g., Harin 2014) and hence are non-evident. In addition, the well-

known law of diminishing marginal utility proposes another ways of the analysis.  
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6.5.  Possible applications 

6.5.1.  Possible applications. Noise  

 

Let us preliminary consider possible applications of the theorem to a noise.  

If a noise leads to some non-zero minimal variance of the considered random 

variable, then this non-zero minimal variance and, consequently, this noise leads to 

the above non-zero forbidden zones for the expectation of this variable. If a noise 

leads to some increasing of the value of this minimal variance then the width of 

these forbidden zones increases also.  

The proposed theorem, approach and model enable to make a step to develop 

possible new mathematical tools for description of the possible influence of noise 

near the boundaries of finite intervals. In particular, if a noise leads to a non-zero 

minimal variance  σ2
Min : σ2 > σ2

Min > 0  of a random variable, then the theorem 

predicts (6) the forbidden zones having the width  rNoise  which is not less than  

ab
r

Min

Noise −
≥

2σ
.  

So, the presented theorem can be some preliminary step to a general 

mathematical description of the possible influence of a noise near the boundaries of 

finite intervals.  

Some general questions concerning this item can arise. For example, general 

definition and determination of level, strength, power, etc. of a noise are needed. 

They should lead to general definition and determination of the non-zero noise. 

Questions about specification of common widespread types of the non-zero noise of 

a measurement, those surely lead to the non-zero minimal variance of the 

measurement data in the common circumstances and environment, can arise as well.  

Due to the general character of the above questions and demand of widespread 

experimental support, there is a need of a wide variety of research teams to give 

solutions reliable answers for these questions.  
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6.5.2.  Possible applications. Biases of measurement data  

 

Let us preliminary consider possible applications of the theorem to possible 

biases of measurement data.  

The considered forbidden zones can evidently lead to some biases in 

measurements. We can preliminary consider this a bit closer. Suppose some 

measurements are performed on a finite interval and their result is a set of the 

measurement data and its expectation. Suppose some forbidden zones arise near the 

boundaries of the interval due to the minimal variance of the data.  

The expectations of the data of the measurements cannot be indeed located 

inside the forbidden zones. They cannot be located closer to the boundaries of the 

interval than the width of the forbidden zone.  

So the above forbidden zones can cause biases for the expectations of the data 

of measurements. The biases are directed from the boundaries to the middle of the 

interval. The biases have the opposite signs near the opposite boundaries of the 

interval. The absolute values of the biases decrease from the boundaries to the 

middle of the interval.  

When the minimal variance of the data is equal to zero, then the expectations 

of the data of measurements can touch the boundaries of the interval. When the 

above forbidden zones are not taken into the consideration then the estimated results 

are also located closer to the boundaries than the real case. Hence the estimated 

results are biased in the comparison with the real ones.  

Particular example of the biases. If the minimal variance of the data  σ2
Min  is 

non-zero, that is if  σ2 > σ2
Min > 0, then the theorem predicts (6) that near the 

boundaries of intervals, the absolute value  ΔBias  of the biases is not less than  

ab

Min

Bias −
≥∆

2

||
σ

.  

So, the presented theorem and approach their consequences and applications 

can be considered as some preliminary step to a general mathematical description of 

the biases of measurement data near the boundaries of finite intervals.  
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7.  Conclusions and discussions  

 

The article can be concluded by the five main and some additional items:  

 

1)  Problems. There are the well-known problems of prospect theories (see, 

e.g., Hey and Orme 1994, Kahneman and Thaler 2006, Thaler 2016): The choices 

of the subjects (people) don’t correspond to the expectations of the outcomes.  

Some of the typical problems consist in the comparison of sure and probable 

outcomes (see, e.g., Kahneman and Tversky 1979, Thaler 2016). They are the most 

pronounced near the boundaries of intervals. Some of them have opposite solutions 

for different domains. For example, Thaler (2016) states (the boldface is my own):  

“We observe a pattern that was frequently displayed: subjects were risk 

averse in the domain of gains but risk seeking in the domain of losses.”  

These problems can be represented in the simplified and demonstrable form 

by the qualitative and special qualitative problems (or that of the equal expectations 

for the probable and sure outcomes) that are considered in the present article similar 

to Harin (2012b). The special qualitative problems are:   

First domain. Gains. Choose between:  

A)  A sure gain of  $99.   

B)  99%  chance to gain  $100  and  1%  chance to gain or lose nothing.  

The expectations are  

%99100$99$99$%10099$ ×===× .  

Second domain. Losses. Choose between:  

A)  A sure loss of  -$99.   

B)  99%  chance to loss  -$100  and  1%  chance to gain or lose nothing.  

The expectations are  

%99100$99$99$%10099$ ×−=−=−=×− ,  

The expected values are exactly equal to each other in the both domains. A 

wealth of experiments (see, e.g. Kahneman and Tversky 1979, Starmer and Sugden 

1991, Thaler 2016) proves nevertheless that the choices of the subjects are 

essentially biased. Moreover as is pointed out, e.g., in Thaler (2016), they are biased 

in the opposite directions for gains and losses. These are the well-known and 

fundamental problems that are usual in behavioral economics and other sciences.  
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2)  Analysis of the problems. A new analysis of these problems was 

developed in recent years (see, e.g., Harin 2012a, Harin 2012b, Harin 2015). The 

analysis is founded on the idea of the non-zero forbidden zones studied here and 

enables at least qualitative explanation of these problems (see, e.g., Harin 2012b).  

 

3)  Mathematical support for the analysis. The forbidden zones theorem is 

proven in the present article. The theorem states that, for a finite interval  [a, b]  

under the condition of existence of some non-zero minimal variance  σ2
Min : σ2 ≥ 

σ2
Min > 0, the expectation  µ   of the measurement data is separated from the 

boundaries  a  and  b  of the interval  [a, b]  by the non-zero forbidden zones  

b
ab

b
ab

aa
MinMin <
−

−≤≤
−

+<
22 σµσ

.  

In other words, the theorem proves the possibility of existence of the non-zero 

forbidden zones that were used in the above analysis. The forbidden zones can exist 

near the boundaries of the intervals of the measurement data. The theorem also 

determines the conditions of the existence of the zones and their minimal width.  
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4)  Mathematical approach for the analysis. The mathematical approach of 

the biases of the expectations (or, simpler, approach of biases, or, simple, approach) 

is founded on the theorem and is to explain not only the objective situations but also 

and mainly the subjective behavior and choices of subjects.  

The two main presuppositions of the approach are:  

1.  The subjects make their choices (at least to a considerable degree) as if 

there were some biases of the expectations of the outcomes.  

(This presupposition can be supported, at least formally: such biases may be 

proposed and tested even only from the purely formal point of view)  

2.  These biases (real biases or subjective reaction and choices of the subjects) 

can be explained (at least to a considerable degree) with the help of the theorem.  

The supposed main general relationships of the approach can be accumulated 

into the three groups (partially corresponding to the above presuppositions):  

1)  The relationship (7) of the non-zero difference between the biases for the 

choices  

0||: >∃ ChoiceChoice dd     or    0sgn ≠Choised .  

2)  The relationships (8) of the theorem and biases of the choices  

02 >Minσ     and    )( TheoremChoise dOd = .  

3)  The relationships (9) of the probable and sure outcomes and choices  

|||| Pr Sureob ∆>∆     or    obChoised Prsgnsgn ∆= .  

Here  ΔProb , ΔSure  and  dChoise ≡ ΔProb - ΔSure  – are appropriately the biases of the 

expectations of the data for the probable and sure outcomes and their difference, 

that is required to obtain the data corresponding to these choices;  dChoise  – is the 

difference that can be obtained by the theorem.  

The first stage of the approach consists in the qualitative mathematical 

explanation of the qualitative problems.  
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5)  Mathematical models for the analysis.  

5.1)  Basics of general qualitative model. The basics of the general formal 

preliminary qualitative mathematical model are developed in the present article.  

The supposed main general relationships additional to the approach are  

µddChoice sgnsgn ≠     and    |||| µddChoice ≥ ,  

where  dµ ≡ µProb - µSure  – is the observed difference between the expectations.  

The general model enables formal solutions of the qualitative problems 

considered here, but the limits of its applicability need additional research.  

 

5.2)  Special qualitative model. The special qualitative mathematical model 

is intended for the practical analysis of the above problems in the special cases 

when the expectations for the probable and sure outcomes are exactly equal to each 

other. The additional relationships (11) of these special cases can be written as  

0sgn =µd    or   0=µd    or   Sureobable µµ =Pr .  

The model can be considered as the first step of the first stage of the approach.  

The special qualitative mathematical model implies the application of the 

forbidden zones theorem under the additional facilitating supposition:  

Due to relationships (9), the bias for the probable outcomes 0|| Pr >∆ obable  

should be non-zero but can be as small as possible. Therefore the minimal variance 

of the measurement data for the probable outcomes can be supposed to be equal to 

an arbitrary non-zero value that is as small as possible to be evidently explainable in 

the presence of a common noise and scattering of the data.  
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Numerical examples. In the scope of the special model, suppose that the 

biases of the expectations are equal, for example, to  ΔProb = $2  for the probable 

outcomes and  ΔSure = $1  for the sure outcomes. Then we have:  

First domain. Gains. In the case of gains we have  
98$1$99$%10099$ =−=∆−× Sure ,  

97$2$99$%99100$ Pr =−=∆−× ob .  

The probable expected value is biased more than the sure one. The biases are 

directed from the boundary to the middle of the interval and, hence, decrease the 

modules of the values and the both values themselves. Therefore the biased sure 

expected value is more than the biased probable one  

97$98$ > .  

The sure gain is evidently more preferable than the probable one and this choice is 

supported by a wealth of experiments.  

Second domain. Losses. In the case of losses we have  
98$1$99$%10099$ −=+−=∆+×− Sure ,  

97$2$99$%99100$ Pr −=+−=∆+×− ob .  

The probable expected value is biased more than the sure one. The biases are 

directed from the boundary to the middle of the interval and, hence, reduce the 

modules of the values but, due to their negative signs, increase the both values. 

Therefore the biased sure expected value is less than the biased probable one  

97$98$ −<− .  

The probable loss is evidently more preferable than the sure one and this choice is 

supported by a wealth of experiments.  

So, the special model enables the qualitative analysis and qualitative 

explanation for the above special problems in more than one domain.  

 

Main mathematical contributions. The four main particular applied 

mathematical contributions of the present article are the mathematical support, 

approach and special qualitative mathematical model for the above analysis and the 

successful uniform application of this model in more than one domain.  

The author has not revealed in the literature such a natural, uniform and 

successful application of any model in more than one domain of the discussed 

problems. Therefore, instead of seeming simplicity, the successful natural and 

uniform application of the special qualitative mathematical model in more than one 

domain belongs also to the main contributions.  
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Possible additional contributions. The two more possible additional general 

applied mathematical contributions can be preliminary mentioned:  

 

Possible general addition. Noise. In addition, possible general consequences 

and applications of the theorem for a noise are preliminary considered.  

In particular, suppose that some type of noise leads to a non-zero minimal 

variance  σ2
Min : σ2 > σ2

Min > 0  of a random variable. Then the theorem predicts (6) 

the existence of the forbidden zones having the width  rNoise  which is not less than  

ab
r

Min

Noise −
≥

2σ
.  

The future goal of this consideration is a general mathematical description of 

the possible influence of a noise near the boundaries of finite intervals.  

 

Possible general addition. Biases. In addition, possible general applications 

of the theorem for biases of measurement data are preliminary considered.  

In particular, if the minimal variance of the data  σ2
Min  is non-zero, that is if  

σ2 > σ2
Min > 0, then the theorem predicts the biases of measurement data in general 

cases. The biases have the opposite signs near the opposite boundaries, are maximal 

near the boundaries and tend to zero in the middles of the intervals. Right against 

the boundaries of intervals, the absolute value  ΔBias  of the biases (6) is not less than  

ab

Min

Bias −
≥∆

2

||
σ

.  

The future goal of this consideration is a general mathematical description of 

the biases of measurement data that can be caused by the above forbidden zones.  

 

Two main future questions. The first main question for future research is to 

analyze the widths of the forbidden zones for various types of distributions. The 

second main future question is to define rigorously the term “non-negligible noise” 

of measurements and prove that any non-negligible noise of measurements causes 

some non-zero minimal variance of the measurement data or, at least, to rigorously 

determine such types of a noise.  
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Appendix. Lemmas of variance maximality conditions  

Preliminaries  

 

The initial particular need is the mathematical support for the analysis (see, 

e.g., Harin 2012a, Harin 2012b and Harin 2015) of the problems of behavioral 

economics. These problems take place for the discrete finite random variables. The 

support for the discrete distributions is given in Bhatia and Davis (2000). Let us 

give an alternative support for the general case.  

In the general case, we have for the random variable of subsection 2.1  

22
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under the condition (1) that either the probability mass function or probability 

density function or alternatively both of them are not identically equal to zero  

1)()(
],[

=+ ∫∑
∈

b

abax

k dxxfxp
k

.  

Pairs of values whose mean value coincides with the expectation of the 

random variable were used, e.g., in Harin (2013). More arbitrary choice of pairs of 

values was used in Harin (2017). Here every discrete and infinitesimal value will be 

transformed, namely divided into the pair of values in the following manner:  

Let us divide every value  p(xk)  into the two values located at  a  and  b   

ab

xb
xp k

k −
−

)(     and    
ab

ax
xp k

k −
−

)( .  

The total value of these two parts is evidently equal to  p(xk).  The center of gravity 

of these two parts is evidently equal to  xk.   

Let us divide every value of  f(x)  into the two values located at  a  and  b   

ab

xb
xf

−
−

)(     and    
ab

ax
xf

−
−

)( .  

The total value of these two parts is evidently equal to  f(x).  The center of gravity 

of these two parts is evidently equal to  x.  So these divisions (transformations) do 

not change the expectation of the random variable.  

Let us prove that the variances of the divided parts are not less than those of 

the initial parts.  
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A1.  Lemma 1. Discrete part  

 

Lemma 1. Discrete part lemma. If the support of a random variable  X,  is an 

interval  ∞<−< )(0:],[ abba   and its variance can be represented as  
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where  p  is the probability mass function of  X,  bxa k ≤≤ ,  ,,...,2,1 Kk =   where  
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is true.  

Proof. Let us find the difference between the transformed  
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expressions for the variance.  

Let us consider separately the cases of  xk ≥ µ  and  xk ≤ µ.   
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A.1.1.  Case of  xk ≥ µ   

 

If  xk ≥ µ,  then the expression in the square brackets can be simplified  
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So in the case of  xk ≥ µ  the difference between the transformed and initial 

expressions for the variance is non-negative.  
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A.1.2.  Case of  xk ≤ µ   

 

If  xk ≤ µ,  then  
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So in the case of  xk ≤ µ  the difference between the transformed and initial 

expressions for the variance is non-negative as well.  
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A.1.3.  Maximality  

 

So the difference  
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is non-negative.  

Let us calculate the difference between the transformed and initial expressions 

of the discrete part of the variance  
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Every member of a sum is non-negative, as in the above expression. Hence the total 

sum is non-negative as well. The lemma has been proven.  

So for the discrete case the variance is not more than that for the probability 

mass function which is concentrated in the two boundary points  a  and  b.   
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A.1.4.  Theorem of Huygens-Steiner  

 

Besides, in the initial expression of the discrete part of the variance  
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This can be transformed to the expression  
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that is in a sense analogous to the theorem of Huygens-Steiner (The general 

possibility of application of the Huygens-Steiner theorem was helpfully pointed out 

by one of the anonymous referees when the preceding version of the present article 

was refereed)  
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A2.  Lemma 2. Continuous part  

 

Lemma 2. Continuous part lemma. If the support of a random variable  X,  

is an interval  ∞<−< )(0:],[ abba   and its variance can be represented as  
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Proof. Let us find the difference between the transformed  
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expressions for the variance.  

Let us consider separately the cases of  x ≥ µ  and  x ≤ µ.   
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A.2.1.  Case of  x ≥ µ   

 

If  xk ≥ µ,  then the difference can be simplified as  
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A.2.2.  Case of  x ≤ µ   

 

If  x ≤ µ,  then the difference can be simplified as  
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A.2.3.  Maximality  

 

Let us calculate the difference between the transformed and initial expressions 

of the continuous part of the variance  
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Due to the integrand of the integral is non-negative for every point in the scope of 

the limits of integration in this expression, the complete integral is non-negative as 

well. The difference is therefore non-negative. The lemma has been proven.  

So for the continuous case the variance is not more than that for the 

probability mass function which is concentrated in the two points  a  and  b.   
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A3.  Lemma 3. Mixed case  

 

Let us consider the general mixed case.  

Lemma 3. General mixed case lemma. If the support of a random variable  

X,  is an interval  ∞<−< )(0:],[ abba   and its variance can be represented as  
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Proof. The general mixed case is compiled from the discrete and continuous 

parts under the condition (1) that at least one of them is not identically equal to 

zero. The conclusions concerned to these parts are true for their sum as well. The 

lemma has been proven.  
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So in any case the variance is maximal for the probability mass function that 

has only the two values located in the two boundary points  a  and  b.  The 

considered transformations (divisions) do not change the expectation of the random 

variable. The expectation for the probability mass function of these two boundary 

points is therefore equal to that of the initial random variable. The expectation of 

any two-points probability mass function determines undoubtedly their values as  
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and the variance as  
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For purely discrete variables, this expression coincides naturally with the result of 

Bhatia and Davis (2000) and the proof can be treated as another version of it.  

So the variance of any random variable that support is located in a finite 

interval  [a, b]  is not more than  

))((][ 2 µµµ −−≤− baXE .  

 

 


